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MODIFIED BOX SCHEMES FOR POLLUTANT TRANSPORT IN 
RIVERS WITH DEAD ZONES 
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SUMMARY 

Several difference schemes approximating a mathematical model of river pollution are investigated and their 
truncation error, stability and monotonicity conditions are shown. Based on numerical experiments, the classical 
six-point schemes and some new modified box schemes are compared. The latter proved to be not only faster but 
also more accurate for practically used step lengths. 
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1 .  INTRODUCTION 

In this paper we numerically investigate a mathematical model describing the transport of pollution in 
rivers (or in soil). The essence of this so-called dead zone model (which became of interest in 
connection with the SANDOZ accident) is that if a great amount of pollution is transported in a short 
time through the main river, then a small amount of soluble matter remains in the dead zones of the 
river (mud, holes, breakwaters) and decreases only slowly. This behaviour can be modelled by the 
system of differential equations 

1 -- t ,  - -[cI(x, t )  - c2(x, t)] - kc&, t ) ,  
at T~ 

distance measured from beginning of river reach (m), 0 < x < L 
time (s), 0 < t 
concentration of pollution in main flow (g mP3) 
concentration of pollution in dead zones (g m-3) 
velocity of main flow (m s-') 
coefficient of longitudinal dispersion in main flow (m2 s- l )  
characteristic time of back diffusion from dead zones into main flow (s) 
characteristic time of diffusion from main flow into dead zones (s) 
chemical decay constant (s- ') 
considered length of river 
considered time of pollution event. 
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The initial and boundary conditions are 

c,(x, t )  = cp(x), O<X<L,  t = 0, i = 1 , 2 ,  

Here L % 1 (say L = lo5 m), i.e. DlvL 4 1, but the considered time Tis large too (say 2 x lo5 s), hence 
the diffusion cannot be neglected. 

In this paper we use the finite difference method to solve problem ( l t ( 3 ) .  
We investigate several difference schemes, their truncation error, stability and monotonicity 

conditions. We report on numerical experiments to check and compare the accuracy of these schemes. 
We will show that modified box schemes give better results for practically used step lengths than 
classical six-point schemes. Therefore, in solving (1b(3), we are able to avoid the solution of 
tridiagonal systems. Our work is based on References 1 and 2. 

2. NUMERICAL METHODS 

2.1 

A simple way to solve the above system is to approximate all the terms of both equations (1) and (2) 
by finite differences (classical six-point schemes). By making use of this approximation, we get a 
system of linear algebraic equations with a block-tridiagonal coefficient matrix to determine the 
solution at the Jth time step. 

One of these approximations is the weighted difference scheme 

clf3,  + va<:l + v(l - a) cii,, - Dac::!, - D(l - a)c:,,, 

1 
TI 

= -[a(c2 - C,)’+’ + (1 - a)(c2 - CI)’], - k[ac;;I + (1 - a)c;,l], (4) 

( 5 )  
1 

7 2  
C2[ , [  = - [a(q - C#+’ + (1 - IT)(Cl - C * ) j I i  - k[aC{;I + (1 - a>c&]. 

Here the following notation has been used: 

R := (O<x<L, O<t<T}, T > 0, 

wr := { (x i ,  $) E Rlh = L / N ;  T = T / M ;  N ,  M E N; xi = ih; $ =jt; i = 0 , .  . . , N,J = 0 , .  . . , M } ,  

c{,i; = cl(xi ,  $1, Ci,;  := C2(X i ,  ti), (xi ,  5 )  E W h r ,  

c;i,; := ~ _ _  c;,i+, - c:.l-I (central difference), 
2h 

(second-order divided difference) c:,1+1 - 2c:,, + c:,,-1 
CiiX,, := 

h2 
and CT is a weighting factor satisfying 0 < a < 1 .  
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Equations (4) and ( 5 )  represent an approximation of order O(S I c7 - I + r2 + h 2 )  and can be shown 
to be stable in a mean square sense if the weighting factor c is not less than i.’,‘ Here the case c7 = 4 is 
investigated. Hence the approximate solution according to (4) and (5) converges to the exact solution 
of (1) and ( 2 )  at least to second order. However, it is well-known that this scheme may lead to 
oscillations when 1 vh/2D 1 > 1. In what follows this scheme will be called the ‘weighted’ difference 
scheme. 

We mention another well-known difference scheme which differs from (4) and ( 5 )  in the 
approximation of the advection term by a backward difference, namely 

where 

This is only a first-order approximation in h but is stable without the condition 1 vhi2D 1 < I .  Based 
on our numerical experiments, we know it to be much less accurate than (4) and (5). Therefore, it is not 
investigated later in Section 3. (The condition of mean square stability here is also c7 3 i.) 
2.2. 

A new way to solve (1) and ( 2 )  is the instead of (1) we approximate the equation 

where we take the boundary conditions into consideration only at x = 0. 
Our approximate solution will contain a certain numerical diffusion D*. This coefficient can be 

expressed by the discretization parameters h, T ,  velocity v and by the weighting factors of the scheme 
used. We select the weighting factors of the approximation in such a way that D* equals the given 
physical diffusion. Using such an approximation, we can get a modified box scheme involving only the 
four points (xi, $), (xi - 1, $), (xi, $+ ,) and (xi _ _  Then, to determine the numerical solution at 
the jth time step, a 2 x 2 system of linear algebraic equations with a constant coefficient matrix has to 
be solved. This system can be solved exactly and the solution can be expressed explicitly. Therefore 
the number of operations here is less than in the case of the scheme (4), (5). 

In this paper two such schemes will be analysed. Based on our numerical experiments, these 
schemes may be considered as the two most accurate ones. 

In what follows we investigate the approximation error and the monotonicity conditions of these 
difference schemes. In Section 3 we compare their accuracy and convergence with the scheme (4), (5). 
In Reference 2 only the case k = 0 has been considered (but a source term f has been added to the 
right-hand side of equation (1)). In our analysis we admit k 2 0. 

f i+ 

Consider the difference scheme 

aclt,i-I + (1 - a)clf,j + B V C / ; , ~  + ( 1  - B) VC{:; 

1 

51 
= -[6(C2 - ? I ) ;  + (1 - 6 ) ( C 2  - cl)i-,] - k[&I,j + (1 - d)ZI,l-l], 
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where 

and c1, f i ,  6 and CJ are weighting factors in the interval [0, I]. 
Since 

equation (7) can be written as 
1 

TI 
C l t , i  + PV ~ { i , ;  + (1 - p)  = - [ 6 ( E 2  - CI); + (1 - 6)(& - Z~)i-l] - k[6Cl,; + (1 - 6)Cl,;-l], 

(9) 

where 
1 
P 

p := -(. +&), 

with p: = rvlh being the Courant number. 

this we expand (9) into a Taylor series at the point (x i  - 1/2, tj+ 112): 

First we determine the coefficient of numerical diffusion and the truncation error of equation (9). For 

(26 - l)h(l + k T 1 )  

( $ + k ) c l  +$+ ( v +  221 axat T~ 

(26 - i)h ac2 
2~~ ax 

- + O ( T ~  + h2) = 0. - 

Differentiating (1) with respect to x, we obtain 

Substituting (1 1) into (lo), we get 

Thus the coefficient of numerical diffusion is 
h 
2 D* = v-[1 +p( l  - 2p)] 

and the velocity coefficients are v + (1 + kT ,)V and - K where 
h 

271 
v := -{26 - 1 - [l +p( l  - 2p)II. 
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Accordingly, if we choose the weighting factors p and 6 to satisfy the two criteria (i) D = D*, i.e. 
p p  = g l  + p  - l/q), where q: =vh/2D is the discrete Reynolds number, and (ii) V=O, i.e. 
6 = i(1 + l /q) ,  then we get that the truncation error is 

d dc1 
v ax3 

$ = -__ + O(h2 + 52) .  

Our numerical experiments show that the value of the term C13cl/8x3 multiplying D2/v is only weakly 
dependent on D and v. After transforming the [0, L] interval to unit length, the truncation error is 

$ = O(D2/vL3 + h2 + T~). 
In Section 3 we will show the effect of this fact on the convergence of the numerical solution. 

If (T = 4, equation (8) is the trapezium rule and hence of second order. 
Further on we consider (8) and (9) with weighting factors which satisfy the criteria (i) and (ii) 

above and with (T = i. In what follows this scheme will be called the ‘straight’ box scheme. For 
practical computations the monotonicity (i.e. non-negativity) of the scheme is important. To analyse 
the monotonicity conditions of the ‘straight’ box scheme, we express c{,T ’ and c{T1 explicitly by 
c;,~, c{,~- c:,:: and c&, c ~ , ~  - I ,  c2,i-  respectively. If the coefficients of these linear expressions 
are non-negative, when the scheme is monotone. In this way we get the monotonicity conditions 

i j+ 1 

where 

if k = 0 and tl .= 52, 

These conditions mean essentially that the Courant number p is close to unity. Using the maximum 
principle, the scheme can be shown to be maximum norm stable with these conditions.495 

Another difference scheme of this modified box type is 
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where 

If the weighting factors are chosen to satisfy 

1 
2 

0 := -, 6 := 1 - l / q ,  
1 
2 a + 13p = - ( I  + p  - 1/q),  

then similarly as above it can be shown that the truncation error is again 

$ = 0(D2/vL3 + h2 + T ~ ) .  

In what follows this scheme will be called the ‘skew’ box scheme. Here the conditions of monotonicity 
are 

or 

Q h d m i n  VT+--,------- 2 0  V 5  +”). > (  ( v  V[Zi ( 2 5 2  + 5 + k552) + T 2 ]  v T ( l / t l  + k )  - 1 v 
2 0  ( 2 5 2  + T + ~ T T ~ ) [ ~ ? T T I  + 2 0 ( - 2 1  + 7 + k t ~ l ) ]  

max -, 

The following assertion can be proved: if T 6 4 ~ ~ / ( 1  + k T l ) ,  then the monotonicity conditions of the 
‘skew’ box scheme are less restrictive than those of the ‘straight’ box scheme, i.e. the ‘skew’ box 
scheme is monotone in a larger domain of the spatial and time steps (h and t) than the ‘straight’ box 
scheme. 

When z > 4tl/( 1 + kl), our numerical experiments show that the same assertion holds. 
In Section 3 we will show that from the viewpoint of the reliability of the numerical solution it is 

very important to choose such h and 7 which satisfy the monotonicity conditions. 

2.3. 

The following difference scheme is also mentioned in Section 3: 

where 

2 2 : 4  2 r  1 
/ + I  (cJ,  - + C&l + c2’,1 + cl.f’>. 21 := i(c:,l-I + c:;!l + c:,, + c:f’), 

This is the ‘simple’ box scheme approximating (6)  and ( 2 )  by neglecting the physical diffusion. (In the 
case of 51 = 52 = m and k =  0 it is the Wendroff scheme.6) We use this scheme for comparison only. 
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3.  NUMERICAL EXPERIMENTS 

3.1. 

The following statement can be proved. The general solution of the ordinary differential equation 
(1 8) gives a particular solution of the system (l), (2) :  

DF({ ) - -  - + k - a  F(<)+ a - - - k  
D ( l  v 72 )'. ( 7'1 ) 

where (: = x  - vt, q ( x ,  t )  : = e-"'F({) and a is an arbitrary parameter. Having fixed a and the 
parameters of the general solution of (18) in different ways, we can get some exact solutions of the 
system (I) ,  (2) with corresponding initial and boundary conditions. The concentration c2 is obtained 
from the expressions 

q ( x ,  t )  = e-"'G(t), 

In this part of the paper these exact solutions are used for comparison with the approximate 
solutions produced by the difference schemes described above. We investigate the accuracy and 
convergence of these numerical solutions. In the experiments, several exact solutions and choices of 
parameters of (1) and (2) have been evaluated. Since the results were similar to each other, we show 
only one case here. 

The exact solution used is 

where 

The corresponding initial and boundary conditions are 

Remark. In further computations the following exact solution has been used and the qualitative 
results obtained are essentially the same: 

cI(x, t )  = e-(k+l'rl)f cos[o(x - vt) le~(~-~ ' ) ,  

where p: = Re i2, w: = Im A2 and A2 is a root of the equation 

if equation (19) has one real and two complex roots, i.e. 



1130 G. STRAUBER 

2 

1 

.. 

.. 

0 -. 
0 200 400 800 800 1000 1200 1400 1600 

~ ~ ~~ - "straight" - "skew" box - "weighted" --O- "simple" 
box box 

h = 7 * v  (m) 
Figure 1. Relative error of c,(x, T )  with respect to h = TV 

When equation (19) has three real roots, the following solutions have been used: 
2 - ( k + l / T ~ ) l  & ( X - V I )  c I ( x ,  t )  = e-(k+1/TI)teA2(x-vf) cz(x, t) = -zlDA2e e 

where A2 E R is one of the roots of equation (19). 

Investigation of the convergence and accuracy. Figures 1 and 2 show the change in the relative error 
of each approximate solutions with respect to decreasing zv = h. These errors were calculated at a 
given time Tin the discrete L2-norm, 

where cI is the exact and El is the computed solution, 1 = 1 ,  2, T= Mz, L = Nh. The parameter of the 
system (l), (2) are here z1 =2x104 s, r2=4x103 s, k= s-' ,  D=150 m2 s- ' ,  v =  1 m s-' ,  
L = 5 x 1 O4 m and T = 8 x 1 O3 s. The data on zl, z2 and D correspond to the Rhine. 

" T  

0 200 400 600 800 1000 1200 1400 1600 
r I - "straight" - "skew" box -----b "weighted" --9- "&mple" 1 box box 

h =  r*v (m) 
Figure 2. Relative error of c&, T ) with respect to h = TV 
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Table I. Ratios of errors for decreasing h 

Scheme Error e el 60de800 eeode4oo e40de200 ezode100 

‘Weighted‘ 11 Acl,T 11 1-23 1 3.692 4.016 4.033 
‘Weighted’ 11 AC2.T 11 2.441 3.809 4.055 4.079 
‘Straight’ box 11 AcI,TIl 4.789 1.588 0.979 0.983 

‘Skew’ box / /  ACI,T 11 2.202 1-129 0.983 0.985 
‘Straight’ box 11 Ac2,T 1 1  3.214 1.409 1.024 1 ~ooo 

‘Skew’ box 11 ACZ,T 11 2.073 1.215 1.035 1.001 

These results are also illustrated in Table I. In this table we give the error ratios corresponding to 

An evaluation of the results is given in Table 11. 
various choices of zv = h (e.g. e1600 is the error for h = 5v = 1600 m). 

3.2. 

In addition to the comparison with the exact solutions, the behaviour of the computed solutions has 
been evaluated in two cases where the initial and boundary conditions were not continuous. In both 
cases the initial and boundary conditions on the grid points are 

1000/h i f x = O ,  t = 0 ,  
ifx=O, t # O o r x # O ,  t = 0 ,  

Q(X, t )  = 0 if x = 0 or t = 0. 

In case 1 the system parameters are .r l=2x104 s, ~ = 4 x 1 0 ~  s, k=O s-l, 0=150m2s-’ ,  
v =  1 m s-’, L =  5 x  lo4 m and T=2x  lo4 s. In case 2 the parameters are 71 = 2 x  lo4 s, z2 = 4 x  lo3 s, 
k =  lop3 s-l, 0 = 1 5 0  m2 s-’, v =  1 m s-l, L=5x104 m and T=9x103 s. 

In both cases the graph of the exact solution has a peak which decreases and spreads with time. 
We investigate the shape and accuracy of the numerical solutions. A ‘quasi-exact’ solution was 

determined in both cases by using the ‘weighted’ scheme with ‘small’ time and space steps (z = 50 s, 
h = 50 m). The convergence of the solutions computed from the ‘weighted’ scheme for several 
decreasing values of z and h has been evaluated and from there the ‘quasi-exact’ solution was found to 
be reliable. In what follows the various numerical solutions for ‘c = 1000 s and h = 1000 m are 
compared with these ‘quasi-exact’ solutions. 

Table 11. Evaluation of results (based on comparison with five exact solutions, altogether about 150 test runs) 

Scheme Convergence Accuracy 

‘Weighted’ Second-order convergence 

‘Straight’ No convergence for fixed dlvL’, since 
box the truncation error is t+b = 

O(hz + T’ + d / v L 3 ) .  However, this 
‘Skew’ box shows up only for T and h much less 

than used in practice 
‘Simple’ box Approximates the equation only for 

D=O 

T(s), h(m) > 300 T ( s ) ,  h(m) < 300 
(practical case) 

Less accurate than modified Most accurate owing 
box schemes to its convergence 
Less accurate than ‘skew’ box Less accurate than 
scheme ‘weighted‘ scheme 

Most accurate scheme 

Significantly less accurate than the other schemes in 
all cases 
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Figure 3. Comparison of ‘quasi-exact’ and numerical solutions, case I 

The solutions computed by the ‘simple’ box scheme (16), (17) are not shown in these figures 

The results for case 1 are shown in Figure 3. Only the approximations of cI(x, T )  are displayed, but 

The results for case 2 show that neglect of the monotonicity conditions can result in serious 

An evaluation of the results is given in Table 111. Finally, in Table IV the CPU times using the 

because they are very inaccurate, with large oscillations in both cases. 

similar results were obtained for q ( x ,  T ) .  

distortions of the solution; see Figures 4 and 5 .  

different schemes are compared with one other. 

3.3. 

In addition to the comparison with the classical six-point schemes, the modified box schemes were 
compared with the widely used QUICKEST For this the sink terms have to be neglected, i.e. 
l/zl = l/r2 = k =  0 s-’. (In this case the ‘skew’ and ‘straight’ box schemes are the same and therefore 
below we will speak only about the modified box scheme.) 

0.000025 

0.00002 

0.00001 5 - 
+E o.ooooi 
J - 0.000005 
v :* 0 
u- 

-0.000005 

-0.00001 

-0.00001 5 
0 5000 10000 15000 20000 

-& - “W -x- 

x (4 
Figure 4. Comparison of ‘quasi-exact’ and numerical solutions, case 2 
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Cl(X, 4 = 

1133 

-(x - 22,500) if 22,500 < x < 25,000, 
‘ 1  

2500 
1 

__ (27,000 - x) if 25,000 < x < 27,500, 
2500 

if 0 <x<22,500, 27,500 < x <  L,  t = 0 orx = 0, , o  

0.001 

w1-E 0.0005 

0 5 -0.0005 
Q- -0.001 

-0.0015 
-0.002 

n 

1 

v 

-0.0025 
0 5000 10000 15000 

- “ 8 @ q p - b o x  -err( 

x (d 

20000 

Figure 5. Comparison of ‘quasi-exact’ and numerical solutions (‘straight’ box scheme), case 2 

A von Neumann linear stability analysis gives the following expression for the amplification factor 
A(a)  of the modified box scheme: 

1 + (2y2/p2 - p2/2 - ;)(I - cos a) p sin a 
A(a) = - i  

1 +(2y+2y*/p2+p2/2-;)(1 - cosa )  1 +(2y+2y2/p2+p2/2-i)(1 -cosa)’ 

where y: = Dr/h2. From here one can prove straightforwardly that the modified box scheme is stable in 
the Neumann sense for every p, y > &-which is not the case for the QUICKEST algorithm’ 

We compare the c,(x, T )  solutions computed by the modified box scheme and the QUICKEST 
algorithm when the parameters of the differential equation are D =  150 m2 s-’, v =  1 m s-I, 
L=5x104 m and T=1500 s. 

The initial and boundary conditions are 

Table 111. Evaluation of the results for discontinuous initial and boundary conditions 

t > 0, 

Case Scheme 

1 ‘Weighted ’ 
‘Straight’ 

box 
‘Skew’ box 

2 ‘Weighted’ 
‘Straight’ 

box 
‘Skew’ box 

Oscillations 

Small 
No 

No 

Large 
Large 

Small 

Peak height 
differs from 
exact one 

No 
Yes 

Yes 

Small 
difference 

Peak shift Accuracy 
( 11 AcI,T 11 

Yes 0.28 
No 0.73 

No 0.70 

- 0.72 
- 79.78 

No 0.57 

Remarks 

- 
7 and h satisfy the monotoni- 
city conditions 

- 
7 and h are far from the 
monotonicity domain 
7 and h are close to the 
monotonicity domain 
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Table IV. CPU times (s) for L = 5x lo4 m and T= 8 x lo3 s (IBWAT 386, 
33 MHz, math coprocessor) 

h = 7v (m) ‘Weighted’ scheme Modified box 
schemes 

1600 0.16 0.06 
800 0.5 0.1 1 
400 I .92 0.6 
200 7.58 242 
100 30.42 9.61 
50 121.71 38.39 

22000 24000 26000 28000 30000 32000 

exaaIacU!im &,&, -  - 
x (4 

Figure 6.  Comparison of ‘quasi-exact’ and numerical solutions of QUICKEST method and modified box scheme 

7 = 300s and h = 250m, i.e. p = 1, 2 and y := D.s/h2 = 0.72 are not in the stability range of the 
QUICKEST algorithm. 

The results are illustrated in Figure 6 .  The QUICKEST algorithm gives large oscillations in this case, 
but the modified box scheme does not. The ‘quasi-exact’ solution was calculated with the ‘weighted’ 
scheme with 5 = 60 s and h = 50 m and the results computed in this way are almost indistinguishable 
from those of the modified box scheme or of the ‘weighted’ scheme with z = 300 s and h = 250 m. 

Of course there are cases where the QUICKEST algorithm is better, e.g. for p = 0.5 = y, T = 75 s and 
h = 150 m the results of QUICKEST are four times more accurate. 

4. CONCLUSIONS 

In this paper we have investigated some difference schemes approximating the system (1H3). Two 
modified box schemes have been proposed which are favourable with respect to CPU time and proved 
to be more accurate for practically used step lengths than classical schemes. Of the two new schemes 
the ‘skew’ box scheme turned out to be more advantageous owing to its better accuracy and larger 
monotonicity domain. Both the monotonicity and small computing time of this scheme make it very 
useful in solving inverse problems connected with (1 H3). 
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